

#### SOLAR + ENERGY STORAGE

### Storage Only Grid Export GHG Emission Reductions Under NEM by Tom Rust trust@custompowersolar.com



Getting to 100% renewables • We cannot get to 100% renewables without energy storage, and we currently have far less storage than solar Solar+Storage Wind+Storage



#### **2019 Total System Electric Generation**

| Fuel Type                                       | California In-<br>State<br>Generation<br>(GWh) | Percent of<br>California In-<br>State<br>Generation | Northwest<br>Imports (GWh) | Southwest<br>Imports (GWh) | Total Imports<br>(GWh) | Percent of<br>Imports | Total California<br>Energy Mix<br>(GWh) | Total California<br>Power Mix |
|-------------------------------------------------|------------------------------------------------|-----------------------------------------------------|----------------------------|----------------------------|------------------------|-----------------------|-----------------------------------------|-------------------------------|
| Coal                                            | 248                                            | 0.12%                                               | 219                        | 7,765                      | 7,985                  | 10.34%                | 8,233                                   | 2.96%                         |
| Natural Gas                                     | 86,136                                         | 42.97%                                              | 62                         | 8,859                      | 8,921                  | 11.55%                | 95,057                                  | 34.23%                        |
| Oil                                             | 36                                             | 0.02%                                               | 0                          | 0                          | 0                      | 0.00%                 | 36                                      | 0.01%                         |
| Other (Waste<br>Heat /<br>Petroleum<br>Coke)    | 411                                            | 0.20%                                               | 0                          | 11                         | 11                     | 0.01%                 | 422                                     | 0.15%                         |
| Nuclear                                         | 16,163                                         | 8.06%                                               | 39                         | 8,743                      | 8,782                  | 11.37%                | 24,945                                  | 8.98%                         |
| Large Hydro                                     | 33,145                                         | 16.53%                                              | 6,387                      | 1,071                      | 7,458                  | 9.66%                 | 40,603                                  | 14.62%                        |
| Unspecified                                     | 0                                              | 0.00%                                               | 6,609                      | 13,767                     | 20,376                 | 26.38%                | 20,376                                  | 7.34%                         |
| Non-<br>Renewables<br>and Unspecified<br>Totals | 136,139                                        | 67.91%                                              | 13,315                     | 40,218                     | 53,533                 | 69.32%                | 189,672                                 | 68.30%                        |
| Biomass                                         | 5,851                                          | 2.92%                                               | 903                        | 33                         | 936                    | 1.21%                 | 6,787                                   | 2.44%                         |
| Geothermal                                      | 10,943                                         | 5.46%                                               | 99                         | 2,218                      | 2,318                  | 3.00%                 | 13,260                                  | 4.77%                         |
| Small Hydro                                     | 5,349                                          | 2.67%                                               | 292                        | 4                          | 296                    | 0.38%                 | 5,646                                   | 2.03%                         |
| Solar                                           | 28,513                                         | 14.22%                                              | 282                        | 5,295                      | 5,577                  | 7.22%                 | 34,090                                  | 12.28%                        |
| Wind                                            | 13,680                                         | 6.82%                                               | 9,038                      | 5,531                      | 14,569                 | 18.87%                | 28,249                                  | 10.17%                        |
| Renewables<br>Totals                            | 64,336                                         | 32.09%                                              | 10,615                     | 13,081                     | 23,696                 | 30.68%                | 88,032                                  | 31.70%                        |
| System Totals                                   | 200,475                                        | 100.00%                                             | 23,930                     | 53,299                     | 77,229                 | 100.00%               | 277,704                                 | 100.00%                       |



# October 2020 report on outages to Governor Newsom

• 2) In transitioning to a reliable, clean and affordable resource mix, resource planning targets have not kept pace to lead to sufficient resources that can be relied upon to *meet demand in the early evening hours.* This makes balancing demand and supply more challenging. These challenges were amplified by the extreme heat storm.



## Current Solar+Storage 2020

- Peak 15.5 Gw Solar CAISO grid tied FTM
- Estimated 9.8Gw Solar NEM BTM
- 4.2Gw of storage, but vast majority of that is hydro
- 216Mw of battery storage to increase to 923Mw by end of 2020
- Even at 1Gw, that is less than 1/50<sup>th</sup> of what is needed to balance the existing solar generation
- We need at least 50Gwh more storage just to offset the existing solar



## Storage Only Under NEM

- Charge Only during non-peak rate periods
- Discharge during peak emissions periods

   which generally now coincide with peak
   rate periods
- Export excess power during peak rate periods to support grid and maximize GHG savings
- Resiliency have capacity to operate offgrid for hours or days



#### New customers served

- Customers with shading issues
- Customers in fire zones who don't qualify for equity resiliency rebates
- Apartment dwellers with insufficient roof space for adequate solar
- Renters with landlords who refuse solar
  - Microgrid adaptors a path to compensation



## Annual Savings Example 1 Residential EV2 midnight-4pm charge

- Battery capacity large enough to operate 24 hours offgrid where capacity = average daily load
- Under EV2 rate \$77/kwh
- Under TOU-C rate \$6/kwh not enough differential
- 37.4 kg/kwh GHG emissions savings
- With \$1000/kwh storage cost, 7 year simple payback
- Charge midnight to 4pm
- Discharge 4-9pm (peak rate period)



#### **Annual Savings Example 1**



## **Example Charge/Discharge 1**



Residential wih EV 8/18 Charge midnight-4pm

## Annual Savings Example 2 Residential EV2 – Daylight charge

- Battery capacity large enough to operate 24 hours offgrid where capacity = average daily load
- Under EV2 rate \$74/kwh
- Under TOU-C rate \$6/kwh not enough differential
- 46.2 kg/kwh GHG emissions savings
- With \$1000/kwh storage cost, 7.3 year simple payback
- Charge 7am to 4pm
- Discharge 4-9pm (peak rate period)



#### Annual Savings Example 2



Charge 7am – 4pm

## Example Charge/Discharge 2



Residential wih EV 8/18 Charge 7am-4pm

## Annual Savings Commercial Example 3

- Battery capacity large enough to operate 24 hours off-grid where capacity = average daily load
- Under B-1ST rate \$44/kwh
- Under B-19S rate \$28/kwh
- 38.7 kg/kwh GHG emissions savings
- With \$500/kwh storage cost, 2.7 year simple payback under B-1ST
- Charge midnight to 4pm
- Discharge 4-9pm (peak rate period)



#### **Annual Savings Example 3**



Charge midnight-4pm

Custom Power Solar

15

Discharge 4-9pm

## Example Charge/Discharge Summer



Large grocery 8/18 Charge midnight-4pm

## Example Charge/Discharge Winter



Large grocery 3/1 Charge midnight-4pm

Annual Savings Example 4 Charge Daylight only hours
Battery capacity large enough to operate 24 hours off-grid where capacity = average daily load

- Under B-1ST rate \$42/kwh
- Under B-19S rate \$17/kwh
- 47.5 kg/kwh GHG emissions savings
- With \$500/kwh storage cost, 2.8 year simple payback under B-1ST
- Charge 7am to 4pm
- Discharge 4-9pm (peak rate period)



#### **Annual Savings Example 4**



Charge 7am – 4pm

## Example Charge/Discharge Daylight only charge



Large grocery 8/18 Charge 7am-4pm



Discharge 4pm-9pm<sup>20</sup>

## Resiliency

- Storage only systems can provide backup for PSPS events, storms, potential fire events, any grid outage.
- Storage capacity = daily average load provides roughly 24 hours of backup
- Loads can be reduced to extent backup time



## Resiliency Example Grid Outage



## SCE Savings Example 5 Residential – Daylight charge

- Battery capacity large enough to operate 24 hours offgrid where capacity = average daily load
- E-TOU-PRIME rate \$27/kwh
- TOU-4-9pm rate \$15/kwh
- 46.2 kg/kwh GHG emissions savings
- With \$1000/kwh storage cost, 20.1 year simple payback
- Charge 7am to 4pm
- Discharge 4-9pm (peak rate period)



#### SCE Savings Example 5



Charge 7am – 4pm

## SCE Savings Example 6 Residential – midnight-4pm charge

- Battery capacity large enough to operate 24 hours offgrid where capacity = average daily load
- E-TOU-PRIME rate \$28/kwh
- TOU-4-9pm rate \$15/kwh
- 37.4 kg/kwh GHG emissions savings
- With \$1000/kwh storage cost, 19.5 year simple payback
- Charge midnight to 4pm
- Discharge 4-9pm (peak rate period)



#### SCE Savings Example 6



Charge midnight – 4pm

## SCE Savings Example 7 Commercial

- Battery capacity large enough to operate 24 hours offgrid where capacity = average daily load
- TOU-GS-3E rate \$6.59/kwh
- TOU-GS-2E rate \$6.62/kwh
- 19.6 kg/kwh GHG emissions savings
- With \$500/kwh storage cost, 18.2 year simple payback
- Charge midnight to 4pm
- Discharge 4-9pm (peak rate period)



#### SCE Savings Example 7



Charge midnight – 4pm

Custom Power Solar

28

Discharge 4pm-9pm

## SCE Commercial Example

- No financial benefit outside of months June-September
- However, still GHG benefits if operated year around
- Limiting use to summer months would increase lifetime of battery by reducing annual use



## SDG&E Savings Example 8 Residential – Daylight charge

- Battery capacity large enough to operate 24 hours offgrid where capacity = average daily load
- DR-SES rate \$30/kwh
- EV-TOU rate \$29/kwh
- 46.2 kg/kwh GHG emissions savings
- With \$1000/kwh storage cost, 18.1 year simple payback
- Charge 7am to 4pm
- Discharge 4-9pm (peak rate period)



#### SDG&E Savings Example 8



Charge 7am – 4pm

## SDG&E Residential Example

- No financial benefit outside of months June-October
- However, still GHG benefits if operated year around
- Limiting use to financial benefit months would increase lifetime of battery by reducing annual use



## SDG&E Savings Example 9 Residential – midnight-4pm charge

- Battery capacity large enough to operate 24 hours offgrid where capacity = average daily load
- DR-SES rate \$36/kwh
- EV-TOU rate \$36/kwh
- 37.4 kg/kwh GHG emissions savings
- With \$1000/kwh storage cost, 15.1 year simple payback
- Charge midnight to 4pm
- Discharge 4-9pm (peak rate period)



#### **SDG&E** Savings Example 9



Charge 7am – 4pm

## **SDG&E Residential Example 9**

 Some financial benefit outside of months June-October – better value than daylight only charging
 Slightly lower GHG benefits



## SDG&E Savings Example 10 Commercial

- Battery capacity large enough to operate 24 hours offgrid where capacity = average daily load
- DG-R rate \$51/kwh
- TOU-M rate \$51/kwh
- 38.3 kg/kwh GHG emissions savings
- With \$500/kwh storage cost, 2.3 year simple payback!
- Charge midnight to 4pm
- Discharge 4-9pm (peak rate period)



#### **SDG&E** Savings Example 10



Charge midnight – 4pm

## Summary

- Export storage only under NEM provides a compensation path with massive GHG reductions with relatively short payback 2-7 years in most cases
- All rates have better value charging midnight-4pm vs daylight only
- Rates with demand charges provide better GHG savings charging midnight-4pm vs daylight only
- Rates without demand charges provide better GHG savings charging daylight only vs midnight-4pm
- Rate differential peak vs other main value driver
- Demand reduction distant second in value
- All cases discharge during peak periods 4-9pm
- Manage resiliency by "storm watch" mode turn off export when grid off events anticipated – leaves full capacity of battery for powering local loads 24+ hours



## Drivers

- Cost savings come from differential between peak and off-peak rates – larger = greater savings
- As grid storage levels increase to match solar levels (at least 2x the total peak power of solar in kwh), decrease differential – reduce incentives for more storage – self limiting by market forces



#### Notes

- All commercial models use the same grocery model normalized for average 1000kwh daily load
- All residential models use the same home model normalized for average 20kwh daily load
- Left two columns in summary are NEM retail rates
- Left most column in summary is the optimized rate
- 2<sup>nd</sup> to left column uses same operational parameters as left most rate but is not optimized
- CCA values may not reflect true rate costs algorithm is set for CCAs under PG&E
- Right most column is IOU value set for PG&E algorithm so may not reflect true value under other IOUs
- 2017 GHG values



### Thank You!

Tom Rust Custom Power Solar, Inc 510-912-4662 trust@custompowersolar.com www.custompowersolar.com





SOLAR + ENERGY STORAGE

