

Solar Plus Storage Focus on Storage Benefits by Tom Rust trust@custompowersolar.com

Getting to 100% renewables

- We cannot get to 100% renewables without energy storage
- Solar+Storage
- Wind+Storage

Overview storage products

- Lead-acid
- Lithium ion
 - Nickel Cobalt Manganese (NCM)
 - Nickel Cobalt Aluminum (NCA)
- Lithium Iron Phosphate (LiFePo)
- Lithium Titanate (LTO)
- Flow Batteries

Lithium Iron Phosphate Batteries

- Lithium Iron Phosphate (LiFePo)
- 96-98% efficiency
- 3000-10,000 cycle life
- High DOD (80%+)
- 3.2-3.6V/cell
- -20 to 60C operating temperature
- Much lighter weight than lead-acid

- Better fire resistance than Li-ion – they cannot burn
- Tend to allow inverters to operate more efficiently
- Typically can last 10+ years
- Limiting to 80% DOD extends life

Value of Storage Batteries

- To evaluate batteries, calculate the actual lifetime dollars per kWh (\$/kwh)
 - Typical lead-acid \$350/kwh / (1500 cycles * 50% DOD * 70% RTE1) = \$0.67/kwh
 - Lithium \$500/kwh / (5000 cycles * 80% DOD * 85% RTE1) = \$0.15/kwh
 - Lithium is 4X+ the value of lead-acid

1 RTE – Round Trip Efficiency = one way efficiency squared – includes inverter efficiency

Value of Storage Batteries

- Another way to evaluate batteries, calculate the actual lifetime dollars per kWh (\$/kwh) per the mfg warranty
 - Example: Lithium \$500/kwh / (3500 cycles
 * 80% DOD * 85% RTE1) = \$0.21/kwh

1 RTE – Round Trip Efficiency = one way efficiency squared – includes inverter efficiency

Value of Storage Batteries in Cost Savings

- Arbitrage moving energy from low rate periods to high rate periods
 - Highest value when high delta off-peak rate vs peak rate
- Demand Reduction reducing the peaks of energy usage spikes = reducing demand charges
- Backup prevent loss of assets when grid fails

Storage Markets

- Residential generally under 10kw
- Small commercial <30kw
- Commercial/Industrial >30kw
- Equity Disadvantaged Communities & Resiliency
 - Residential
 - Non-residential

CCA Impacts

- East Bay Community Energy
 - New NEM customers can receive up to \$2500/year cash back for excess power
- Marin Clean Energy
 - No limit on cash back for excess power
- Peninsula Clean Energy
 - No limit on cash back for excess power
- Credits can roll over to succeeding years

Some Residential Storage Systems

- BMZ
- Custom Power Solar
- LG Chem
- SimpliPhi
- Sonnen
- Sunrun
- Tesla Powerwall
- Darfon

Lithium Iron Phosphate Battery Suppliers cycle life >3000

- Energport
- SimpliPhi
- BYD
- CATL
- Battle Born
- Kilovault
- Renogy

Lithium Iron Phosphate Battery Suppliers cycle life >3000 (continued)

- Enphase
- Blue Ion
- Sonnen
- Discover
- Fortress
- Humless
- Iron Edison
- CATL

Finance Options

- Cash is king for contractors
- Home owner
- Equity Line Of Credit (HELOC) 3 5% typical rate
- PACE funding payments go on property taxes, 0% down, terms up to 25 years

Residential Storage Only Systems

- Custom Power Solar
- Outback inverter includes automatic transfer switch (ATS)
- CATL LiFePo batteries 6000 cycle 20 year
 - 4kw/13.5kwh \$14k
 - 8kw/27kwh \$21k
- \$370/kwh after rebates and Federal Incentive Tax Credit of 26%

¹Typical Installation costs - costs may vary and does not include permitting costs

EV2 SOLAR+STORAGE RATE 2021 EV is NOT required: Solar+ storage is required

	Peak	\$0.49616
Summer	Part-Peak	\$0.38567
	Off-Peak	\$0.18366
	Peak	\$0.36905
Winter	Part-Peak	\$0.35235
	Off-Peak	\$0.18366

Peak: 4PM – 9PM, All Days Part-Peak: 3PM – 4PM & 9PM – 12AM, All Days Off-Peak: 12AM – 3PM, All Days

Typical Residential Solar+Storage Savings - PG&E EV2 Rate

				C ¹ a a b			
				Simple		kwh	
	Solar+Storage			Payback	Payback	generated	Storage
	Savings	Raw Cost	Final Cost	Years	with EV	per year	size
4kw PV/13.5kwh	\$2,540	\$32,700	\$21,903	8.6	5.4	6400	13.5
6kw PV/13.5kwh	\$3,291	\$34,500	\$23,235	7.1	4.8	9600	13.5
7kw PV/27kwh	\$4,766	\$41,925	\$26,434	5.5	4.2	11200	27
8kw PV/27kwh	\$5,137	\$45 <i>,</i> 800	\$29,302	5.7	4.4	12800	27
12kw PV/27kwh	\$6,619	\$49,200	\$31,818	4.8	3.9	19200	27

¹Typical Installation costs – systems using Outback Radian or Sol-Ark with LFP batteries & 20%+ efficiency modules at \$0.60/watt. Savings assumes full arbitrage storage mode. Payback with EV assumes gas savings average 31 miles/day \$4/gal compared to 30mpg. Final cost includes ITC (Investment Tax credit of 26%) and SGIP rebate (Self-Generation Incentive Program) at current rate \$0.20/watt-hour

Storage Benefit - Residential Solar+ Storage EV2 rate

Savings	Solar only	Solar+storage	Storage Benefit
4kw PV/13.5kwh	\$1,430	\$2,540	78%
6kw PV/13.5kwh	\$2,147	\$3,291	53%
7kw PV/27kwh	\$2,410	\$4 <i>,</i> 766	98%
8kw PV/27kwh	\$2,863	\$5,137	79%
12kw PV/27kwh	\$4,295	\$6,619	54%

Vehicle to Home (V2H)

- Current offerings
 - 2kw from 12V auxiliary system fed by traction battery in EV/hybrids
 - All EVs/hybrids have this capability
 - EV must remain on to maintain power
 - Outback Power Generator input supports use
 - Option on Custom Power Solar systems
 - Emergency use to backfill home & battery
- Coming
 - OSSIACO

EV value

- <u>https://ev.pge.com/compare_vehicles</u>
- http://custompowersolar.com/ev_vs_ICE_GHG.xlsx

EV value vs ICE

	Cost after		Lifetime				GHG	GHG
Car	incentives	Lifetime cost	cost/mi	Fuel cost	mi/kwh	mi/gal	mTons	Mt/yr
Chevy Bolt	\$32,745	\$42,299.25	\$0.28	\$6,428.57	3.5		7.63	0.575449
Toyota Camry	\$30,000	\$55,836.36	\$0.37	\$17,142.86		35	36.77	2.773985
Tesla 3 standard	\$35,615	\$45,169.25	\$0.30	\$6,428.57	3.5		7.63	0.575449
Hyundai Kona	\$27,995	\$37,549.25	\$0.25	\$6,428.57	3.5		7.63	0.575449
Toyota Prius Prime	\$27,050	\$47,064.26	\$0.31	\$11,320.75		53	24.28	1.831877
Best		\$37,549.25					7.63	
Worst		\$55,836.36					36.77	
Difference		\$18,287.12					29.15	
% improvement							79%	
Lifetime	150,000	miles						
Average use	31	mi/day						
	11,315	mi/yr						
Years lifetime	13							
Cost of electricity	\$0.15	\$/kwh						
Cost of gas	\$4	\$/gal						
GHG gas	0.0085806	mT/gal						
GHG electric off-								
peak	0.000178	mT/kwh						

Commercial Storage Systems

- Typical in USA 240V/480V 3 phase:
- Range of costs: \$250-\$1000/kwh
- After SGIP rebate and ITC \$0- \$500/kwh

Some Commercial Storage Systems Providers

- Advanced Microgrid Solutions
- BYD
- Custom Power Solar
- LG Chem
- Sonnen
- STEM
- Tesla Powerpack
- Avalon (Flow batteries)

Battery Size vs Savings Solar+Storage

			Ctores				Circula		Annual
			Storage		1		Simple		Annual
1	Storage	Storage	savings	Solar+Storag	1		Payback	10 year Total	Cost-
PV size kw	Multiplier	size kwh	per kwh	e Savings	Raw Cost	Final Cost	Years	Income	Savings
143.04	0	0.00	\$0	\$28,172	\$214,564	\$158,778	5.6	\$162,399	\$32,328
143.04	0.5	71.52	\$74	\$33,441	\$239,597	\$156,560	4.7	\$224,684	\$27,059
143.04	1	143.04	\$60	\$36,696	\$264,629	\$154,343	4.2	\$264,009	\$23,804
143.04	2	286.09	\$52	\$43,083	\$314,694	\$149,909	3.5	\$341,257	\$17,417
143.04	4	572.17	\$38	\$50,001	\$414,824	\$141,040	2.8	\$428,988	\$10,499
PV Rate \$/watt	\$1.50		Rate	B-19R					
Storage rate							/		
\$/kwh	\$350			Up to 1MW de					
Savings rate PV	\$197								
SGIP rebate									
rate \$/wh	\$0.29		'		'		'	· ·	
ITC	26%								
PV Size	143.0429	kw							
Storage Only	0	1 if calc fo	or storage or	nly					
Ave Load Rate	\$0.275		\$60,500	Load Cost					
Gen rate	1538	kwh/kw							
Solar percent									
of load	100%		Enter percentage of load desired to be generated by solar						
Annual gen	220,000	kwh							
Annual Load	220,000	kwh	Enter annual energy usage here						

PG&E B-19R rate. 10 year income includes 3%/yr utility increases, -0.5% solar degradation. Does not include depreciation

http://www.custompowersolar.c<u>om/savings_simple_models.xlsx</u>

Cost Modeling Tools

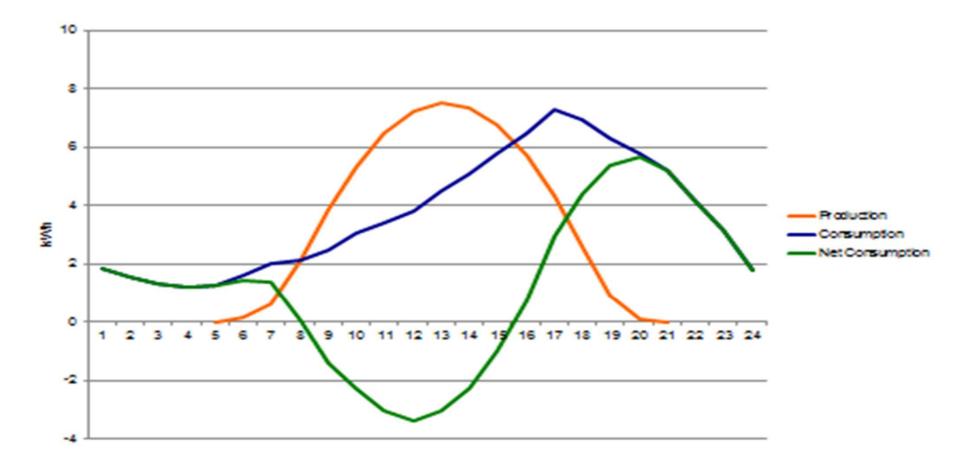
- Why do cost modeling?
- Determine cost savings using customer load profile and projected solar size
- Compare rates
 - Energy Toolbase
 - Geli
- Developer runs analysis for you
 - Custom Power Solar

Cost Modeling Tools and Financial Modeling

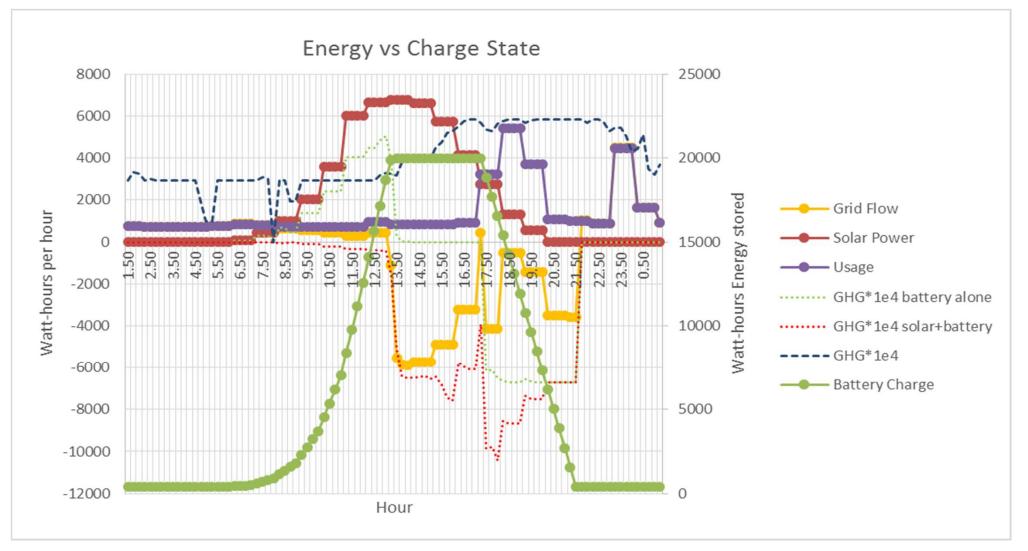
- Model financial returns over time
- Property Assessed Clean Energy
 - HERO
 - Ygrene
 - Renew Financial PACE funding –
- CleanFund
- For Non-Profits Collective Sun

Cost Modeling Tool Tips

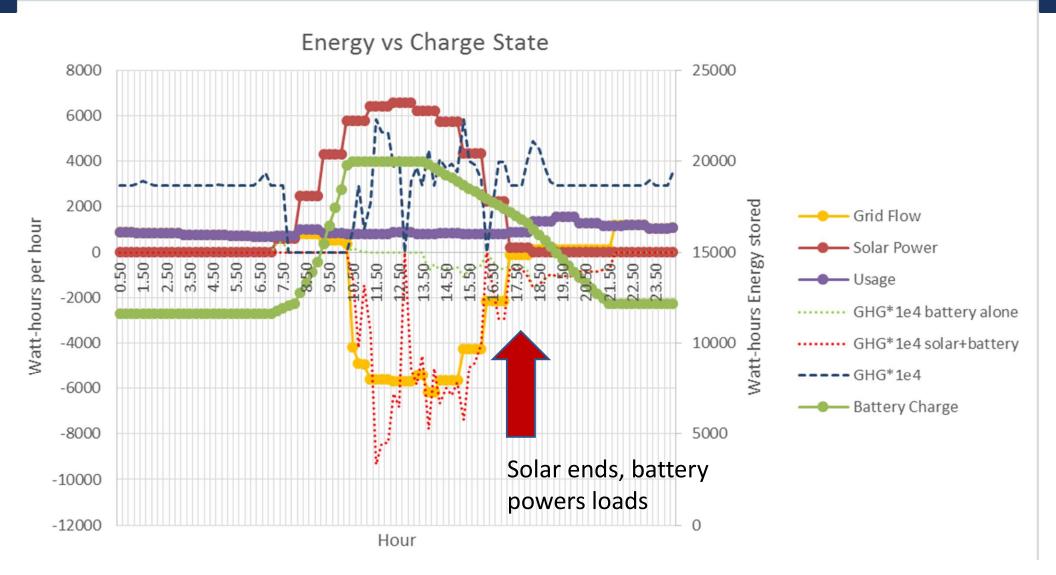
- Get the load profile
 - UtilityAPI helps with format you need
 - PG&E Green Button
- Calculate solar size
- Best size at least 100% of the annual energy usage in kwh of customer
- Quick estimate Annual Usage(kwh)/1500 = PV size in kw
- Make sure size fits available space
 - roof
 - ground
 - carport


Cost Modeling Tool Tips Cont'd

- Storage size best SGIP rebate value
- = 2X the solar size
- Example:
 - 5kw solar needed,
 - 5*2=10kwh battery best value
- Best customer long term value
 - >2X, 4X the solar size
- 4X –cost savings double that of 2X battery size (4X savings).


Typical Solar Production and Consumption

Net Load Profile


Residential Solar+Storage+EV – Arbitrage Daily Cycle

6/21 – cost savings through arbitrage – store solar power in am, discharge during peak

Resi Solar+Storage+EV Self Supply– Daily Cycle

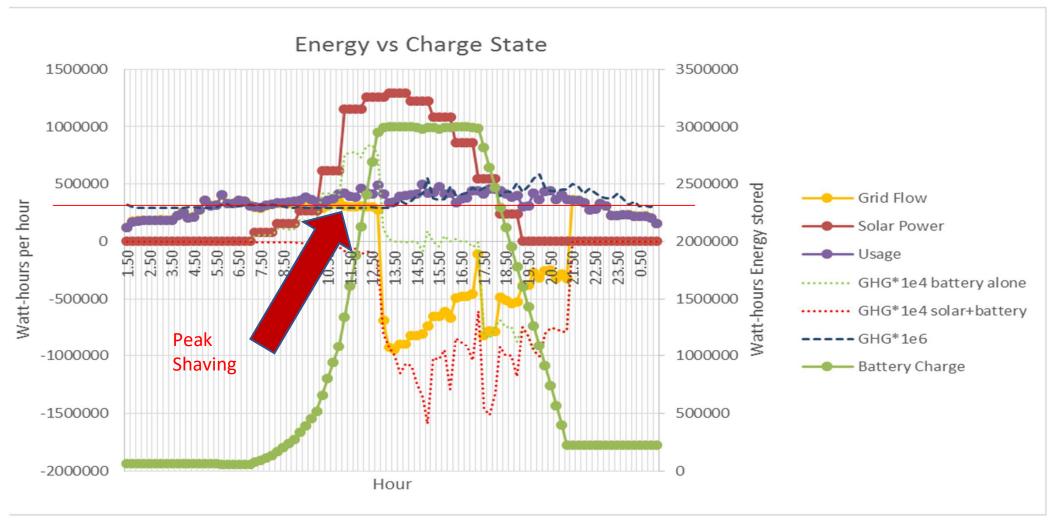
2/4 – cost savings through self supply – store solar power in am, discharge during peak but only power loads

Commercial Rate Analysis

Models by:	Custom Power Solar		Grocery_e19r_2	19.xlsx	
			Load year	2017	
		Annual			
	E-19R 2019	E-19R	A-6	A-10	EBCE FIT
Cost	\$60,641.85	\$60,148.60	\$90,395.58	\$62,384.84	
Cost Est. with Solar	\$21,195.30	-\$4,417.59	-\$23,409.90	\$3,752.30	\$39,074.74
Cost Est. with Solar+Storage	-\$527.03	-\$6,881.43	-\$26,189.82	\$2,871.97	\$67,534.67
Improvement over solar only	55.07%	3.82%	2.44%	1.50%	
Cost Advantage batteries	\$21,722.33	\$2,463.84	\$2,779.92	\$880.32	
Cost savings solar only	\$39,446.55	\$64,566.19	\$113,805.48	\$58,632.55	
Total Value Solar+Storage	\$61,168.88	\$67,030.03	\$116,585.40	\$59,512.87	
Optimized Rate	\$167.72	\$274.53	\$483.89	\$249.30	solar only savings
	\$45.25	\$5.13	\$5.79	\$1.83	storage only saving
Total usage	361,803	kwh	120.00	kw Battery	
Total solar	361,803	kwh	235.19	kw AC Solar	
Surplus	0	kwh	480.00	kwh Battery	
Percent solar vs usage	100.0%		84.9%	RTE	
GHG savings	117,208	kgs/CO2	np15	GHG Data	
GHG savings battery alone	19,709	kgs/CO2	158,111	kwh Battery use	1
Annual percent dispatchable	43.7%		9.02%	% of Life used	
		Annual Demand	Charges		Max Demand
	E-19R 2019	E-19R	A-6	A-10	
Cost	\$14,304.38	\$13,283.25	\$0.00	\$10,593.14	67.47
Cost Est. with Solar	\$13,768.40	\$12,531.79	\$0.00	\$10,200.49	64.69
Cost Est. with Solar+Storage	\$13,038.70	\$12,201.04	\$0.00	\$9,773.44	63.75

	Annual Energy Charges							
	E-19R 2019 E-19R A-6 A-10							
Cost	\$46,337.47	\$46,865.35	\$90,395.58	\$51,791.70				
Cost Est. with Solar	\$7,426.90	-\$16,949.38	-\$23,409.90	-\$6,448.20				
Cost Est. with Solar+Storage	-\$13,565.73	-\$19,082.47	-\$26,189.82	-\$6,901.46				
Grid Charge	0 kwh							
Grid Charge	0 days							

All rates run with same conditions, optimized to first column rate


Final cost

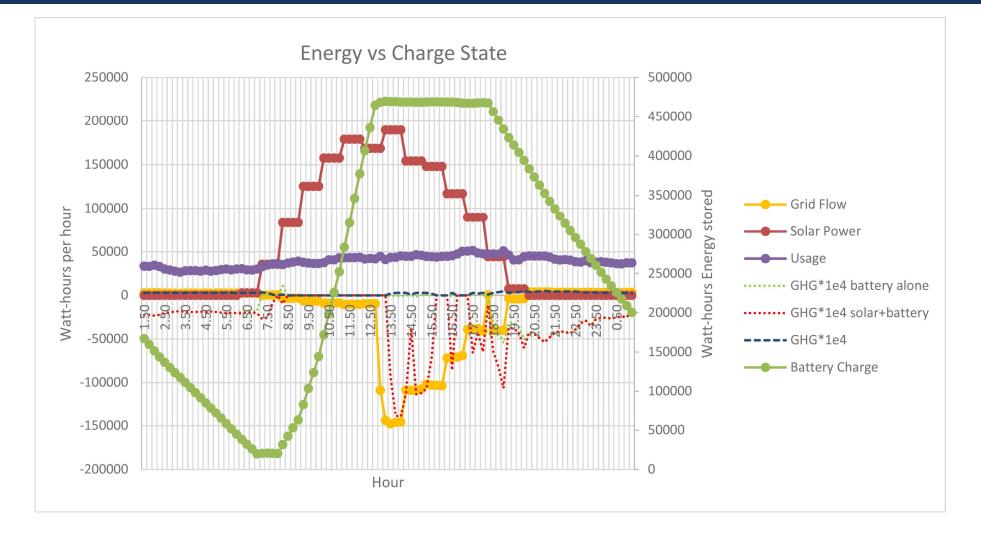
Simple payback yrs

\$225,349.18

3.7

Commercial Solar+Storage – Arbitrage & Demand Reduction Daily Cycle

6/21 – cost savings through demand response – peak shaving (red line) and arbitrage – store solar power in am, discharge during peak



Best Rates for Solar+Storage- Commercial

- PG&E
 - A1STORE
 - B-19R
 - Option S if high demand charges
 - B-20R very large systems over 1MW demand

Backup

Date: 4/30 Grid flow all negative – only exporting to grid. No export during power outage. Solar sized = 100% of load, 2X battery size

Conclusions

- Be conservative with storage cost savings projections – nothing worse than customers getting less than they planned on
- Design at least a 20% buffer in the size of the battery system
 - Improves lifetime
 - Reduces impact of day-to-day variations in use

Thank You!

Tom Rust Custom Power Solar, Inc 510-912-4662 <u>trust@custompowersolar.com</u>

www.custompowersolar.com

Lithium Iron Phosphate Batteries

- Lithium Iron Phosphate (LiFePo)
- 96-98% efficiency
- 3000-6000 cycle life
- High DOD (80%+)
- 3.2-3.6V/cell
- -20 to 60C operating temperature
- Much lighter weight than lead-acid

- Better fire resistance than Li-ion
- Tend to allow inverters to operate more efficiently
- Typically can last 10+ years
- Raw cost for cells now only \$110-130/kwh

LFP Safety

- Safest of all battery chemistries
- No Cobalt
- No Flourine in vented gas components if burns

Gas		Measured %
Hydrogen	H ₂	50.73
Carbon Monoxide	CO	11.17
Carbon Dioxide	CO ₂	24.86
Methane	CH ₄	6.60
Ethylene	C_2H_4	3.06
Ethane	C_2H_6	1.19
Propene	C_3H_6	1.01
Propane	C_3H_8	0.40
-	C ₄ (Total)	0.88
-	C₅ (Total)	0.10
Total	-	100

Table 11 – Components measured in vented cell gas

CATL LFP 272Ah cell UL9540A test data from cell heated to destruction

Lead Acid Batteries

- 80-85% efficiency¹
- 1000-1500 cycle life at best
- Limited Depth of Discharge (DOD) for best lifetime
- Typical DOD only 50%
- Some require maintenance
- Lifetime is typically 6-7 years
- Heavy 4X as heavy as Lithium batteries
- Lead is a toxin
- Recycling an issue

¹ One way efficiency

Lithium Ion Batteries

- Nickel Cobalt Manganese (NCM)
- Nickel Cobalt Aluminum (NCA)
- 96-98% efficiency
- 3000-5000 cycle life
- High DOD (80%+)
- 3.6-4.2V/cell
- 0-45C operating temperature
- Much lighter weight than lead-acid
- Typically can last 10+ years

Lithium Titanate Batteries

- Titanate (LTO)
- 96-98% efficiency
- 3000-30,000 cycle life
- High DOD (80%+)
- 2-2.6V/cell
- -30C to 45C operating temperature

- Lower energy density than other lithium
- Generally very high charge/discharge rate
- Higher cost but longer cycle life
- Typically can last 10+ years

Flow Batteries

- 80-85% efficiency
- 30,000+ cycle life
- Higher Capex
- Heavy
- Long cycles are typical

Storage System Components

- Batteries
 - Cells in parallel
 - Cell groups in series
- Battery Management System (BMS)
 - Required for lithium batteries
 - Maintains cells within 0.02V of each other
- Inverter
 - Moves energy to/from battery
- Automatic Transfer Switch (option)
 - Disconnects solar+storage system from grid
 - Allows on grid or off-grid operation

Storage System Components, cont'd

- Monitoring system all system functions
 - Voltages
 - Temperatures
 - Current flows
- Typically data stored in cloud and locally
- Control
 - Network interfaced system operations
- NGOM
 - Separate Metering for monitoring solar vs battery
 - Not needed in residential systems

Examples - SGIP approved battery systems

- Energport
- BYD
- LG
- SimpliPhi
- Tesla
- Contact your SGIP Program Administrator for specifics

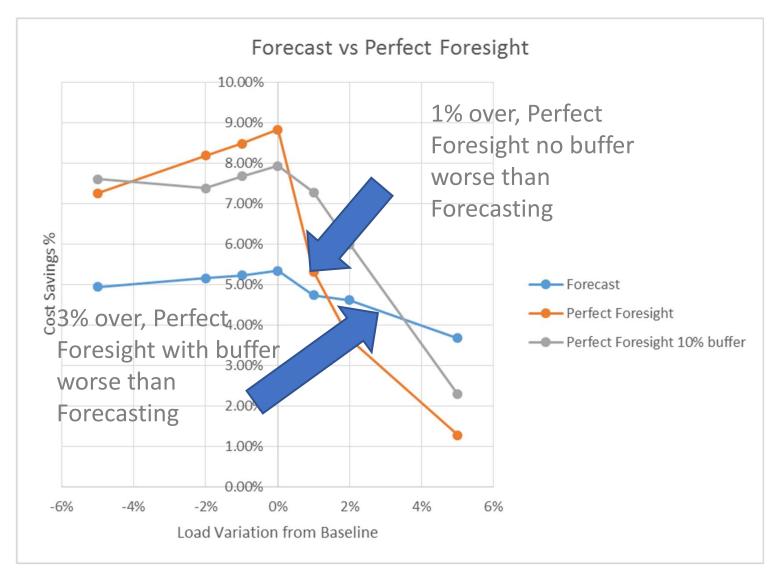
Energport

Features:

- <u>Saves electricity cost</u> by reducing demand charges and shifting load to off-peak period
- System payback in less than 4 years
- Simple modular design, scalable for any size and use
- LFP Safest Lithium ion battery on the market
- Cloud-based optimization and reporting
- Small footprint
- Connects to existing circuits
- <u>Emergency backup</u> as bonus function
- \$0 down lease available
- Low APR financing available
- <u>California SGIP rebate</u> available
- 30% federal tax credit with Solar PV
- 15-year design life; 10-year warranty
- Fully installed for less than \$0.40/Wh
- CE, UL compliance

BYD Energy Storage System

240 Kwh in outdoor container Includes all operational and climate controls



How Realistic is Perfect Foresight in Real World Storage Operations?

- Many tools (Energy Toolbase, Geli) use a Perfect Foresight model to analyze load profiles+solar with given rate and determine "best case" cost savings –
- Not realistic in real life use
- More realistic Forecasting used by Custom Power Solar

Forecasting Sensitivity Analysis – Cost Savings

Conditions – C9 load (500kw demand peak), storage only 370kw,870kwh

Conclusions

- <u>Perfect Foresight</u> is extremely sensitive to real life load conditions – if load exceeds baseline – even slightly, savings are lost
 - 1% over load conditions eliminate all savings from Perfect Foresight vs Forecasting with no buffer
 - 1% over condition virtually certain in real life conditions
- <u>Forecasting</u> method likely produces more consistent, reliable cost savings than perfect foresight

THANK YOU

"PG&E" refers to Pacific Gas and Electric Company, a subsidiary of PG&E Corporation. ©2020 Pacific Gas and Electric Company. All rights reserved. These offerings are funded by California utility customers and administered by PG&E under the auspices of the California Public Utilities Commission.