

Solar Plus Storage Focus on Storage Benefits by Tom Rust trust@custompowersolar.com

Getting to 100% renewables

We cannot get to 100% renewables without energy storage
Solar+Storage
Wind+Storage

Overview storage products

- Lead-acid
- Lithium ion
 - Nickel Cobalt Manganese (NCM)
 - Nickel Cobalt Aluminum (NCA)
- Lithium Iron Phosphate (LiFePo)
- Lithium Titanate (LTO)
- Flow Batteries

Lithium Iron Phosphate Batteries

- Lithium Iron Phosphate (LiFePo)
- 96-98% efficiency
- 3000-10,000 cycle life
- High DOD (80%+)
- 3.2-3.6V/cell
- -20 to 60C operating temperature
- Much lighter weight than lead-acid

- Better fire resistance than Li-ion – they cannot burn
- Tend to allow inverters
 to operate more
 efficiently
- Typically can last 10+ years
- Limiting to 80% DOD extends life

Value of Storage Batteries

- To evaluate batteries, calculate the actual lifetime dollars per kWh (\$/kwh)
 - Typical lead-acid \$350/kwh / (1500 cycles * 50% DOD * 70% RTE¹) = \$0.67/kwh
 - Lithium \$500/kwh / (5000 cycles * 80% DOD * 85% RTE¹) = \$0.15/kwh
 Lithium is 4X+ the value of lead-acid

¹ RTE – Round Trip Efficiency = one way efficiency squared

Value of Storage Batteries in Cost Savings

- Arbitrage moving energy from low rate periods to high rate periods
 - Highest value when high delta off-peak rate vs peak rate
- Demand Reduction reducing the peaks of energy usage spikes = reducing demand charges
- Backup prevent loss of assets when grid fails

Storage Markets

 Residential – generally under 10kw Small commercial <30kw</p> Commercial/Industrial >30kw Equity – Disadvantaged Communities & Resiliency Residential Non-residential

CCA Impacts

East Bay Community Energy New NEM customers can receive up to \$2500/year cash back for excess power Marin Clean Energy No limit on cash back for excess power Peninsula Clean Energy No limit on cash back for excess power Credits can roll over to succeeding years

Some Residential Storage Systems BMZ Custom Power Solar LG Chem SimpliPhi Sonnen Sunrun Tesla Powerwall Darfon

Lithium Iron Phosphate Battery Suppliers cyle life >3000

Energport SimpliPhi BYD CATL **Battle Born** Kilovault Renogy

Lithium Iron Phosphate Battery Suppliers cyle life >3000 (continued)

- Enphase
- Blue Ion
- Sonnen
- Discover
 - Fortress
- Humless
- Iron Edison

Finance Options

Cash - is king for contractors
Home owner
Equity Line Of Credit (HELOC)- 3 - 5% typical rate
PACE funding – payments go on

property taxes, 0% down, terms up to 25 years

Residential Storage Only Systems

- Custom Power Solar
- Outback inverter includes automatic transfer switch (ATS)
- Energport LiFePo batteries
 - 4kw/10kwh \$14k
 - 8kw/20kwh \$21k

 \$500/kwh after rebates and Federal Incentive Tax Credit of 26%

¹Typical Installation costs - costs may vary and does not include permitting costs

EV2 SOLAR+STORAGE RATE 2020 EV is NOT required: Solar+storage is required

	Peak	\$0.47861
Summer	Part-Peak	\$0.36812
	Off-Peak	\$0.16611
	Peak	\$0.35150
Winter	Part-Peak	\$0.33480
	Off-Peak	\$0.16611

Peak: 4PM – 9PM, All Days Part-Peak: 3PM – 4PM & 9PM – 12AM, All Days Off-Peak: 12AM – 3PM, All Days

Residential EV-A vs new storage EV2 rate - Savings 8kw/20kwh

	Solar only	Solar+Storage	Difference
EVA	\$3,825	\$4,944	129%
EV2	\$2,863	\$4,241	148%
Difference	75%	86%	

All EVA customers will be moved to EV2 rate after grandfathering period

Typical Residential Solar+Storage Savings - PG&E EV2 Rate

				Simple		kwh
	Solar+Storage			Payback	Payback	generated
	Savings	Raw Cost	Final Cost	Years	with EV	per year
4kw PV/10kwh	\$2,120	\$32,700	\$21,698	10.2	6.0	6400
6kw PV/10kwh	\$2,863	\$34,500	\$23,030	8.0	5.3	9600
7kw PV/20kwh	\$3,757	\$41,925	\$26,024	6.9	4.9	11200
8kw PV/20kwh	\$4,241	\$45,800	\$28 <i>,</i> 892	6.8	5.0	12800
12kw PV/20kwh	\$5,725	\$49,200	\$31,408	5.5	4.3	19200

¹Typical Installation costs – systems using Outback Radian or Skybox with LFP batteries & 20%+ efficiency modules at \$0.60/watt. Savings assumes full arbitrage storage mode. Payback with EV assumes gas savings average 31 miles/day \$4/gal compared to 30mpg. Final cost includes ITC (Investment Tax credit of 26%) and SGIP rebate (Self-Generation Incentive Program) at current rate \$0.20/watt-hour

Storage Benefit - Residential Solar+Storage EV2 rate

Savings	Solar Only	Solar+Storage	Storage Benefit
4kw PV/10kwh	\$1,430	\$2,120	48%
6kw PV/10kwh	\$2,147	\$2,863	33%
7kw PV/20kwh	\$2,410	\$3,758	56%
8kw PV/20kwh	\$2,863	\$4,241	48%
12kw PV/20kwh	\$4,295	\$5,725	33%

Vehicle to Home (V2H)

Current offerings

- 2kw from 12V auxiliary system fed by traction battery in EV/hybrids
- All EVs/hybrids have this capability
- EV must remain on to maintain power
- Outback Power Generator input supports use
- Option on Custom Power Solar systems
- Emergency use to backfill home & battery
- Coming
 - OSSIACO

EV value

<u>https://ev.pge.com/compare_vehicles</u>
http://custompowersolar.com/ev_vs_ICE_ GHG.xlsx

EV value vs ICE

	Cost after		Lifetime				GHG	GHG
Car		Lifatima cast		Fuel cost	mi/lauh	mi/aal		
		Lifetime cost	-			mi/gal		Mt/yr
Chevy Bolt	\$32,745	\$42,299.25	\$0.28	\$6,428.57	3.5		7.63	0.575449
Toyota Camry	\$30,000	\$55,836.36	\$0.37	\$17,142.86		35	36.77	2.773985
Tesla 3 standard	\$35,615	\$45,169.25	\$0.30	\$6,428.57	3.5		7.63	0.575449
Hyundai Kona	\$27,995	\$37,549.25	\$0.25	\$6,428.57	3.5		7.63	0.575449
Toyota Prius Prime	\$27,050	\$47,064.26	\$0.31	\$11,320.75		53	24.28	1.831877
Best		\$37,549.25					7.63	
Worst		\$55,836.36					36.77	
Difference		\$18,287.12					29.15	
% improvement							79%	
Lifetime	150,000	miles						
Average use	31	mi/day						
	11,315	mi/yr						
Years lifetime	13							
Cost of electricity	\$0.15	\$/kwh						
Cost of gas	\$4	\$/gal						
GHG gas	0.0085806	mT/gal						
GHG electric off-								
peak	0.000178	mT/kwh						

Commercial Storage Systems

• Typical in USA 240V/480V 3 phase:

Range of costs: \$250-\$1000/kwh

After SGIP rebate and ITC - \$0- \$500/kwh

Some Commercial Storage Systems Providers

- Advanced Microgrid Solutions
- BYD
- Custom Power Solar
- LG Chem
- Sonnen
 - STEM
- Tesla Powerpack
- Avalon (Flow batteries)

Battery Size vs Savings Solar+Storage

					$\mathbf{\overline{\mathbf{v}}}$			\sim	
			Storage				Simple		Annual
	Storage	Storage	savings	Solar+Storag			Payback	10 year Total	Cost-
PV size kw	Multiplier	size kwh	per kwh	e Savings	Raw Cost	Final Cost	Years	Income	Savings
143.04	0	0.00	\$0	\$28,172	\$214,564	\$158,778	5.6	\$162,399	\$32,328
143.04	0.5	71.52	\$74	\$33,441	\$239,597	\$156,560	4.7	\$224,684	\$27,059
143.04	1	143.04	\$60	\$36,696	\$264,629	\$154,343	4.2	\$264,009	\$23,804
143.04	2	286.09	\$52	\$43,083	\$314,694	\$149,909	3.5	\$341,257	\$17,417
143.04	4	572.17	\$38	\$50,001	\$414,824	\$141,040	2.8	\$428,988	\$10,499
PV Rate \$/watt	\$1.50		Rate	B-19R					
Storage rate									
\$/kwh	\$350			Up to 1MW de	emand				
Savings rate PV	\$197								
SGIP rebate									
rate \$/wh	\$0.29								
ITC	26%								
PV Size	143.0429	kw							
Storage Only	0	1 if calc fo	r storage o	nly					
Ave Load Rate	\$0.275		\$60,500	Load Cost					
Gen rate	1538	kwh/kw							
Solar percent									
of load	100%		Enter percentage of load desired to be generated by sola				by solar		
Annual gen	220,000	kwh							
Annual Load	220,000	kwh	Enter annu	ial energy usag	e here				

PG&E B-19R rate. 10 year income includes 3%/yr utility increases, -0.5% solar degradation. Does not include depreciation http://www.custompowersolar.com/savings_simple_models.xlsx

Cost Modeling Tools

Why do cost modeling? Determine cost savings using customer load profile and projected solar size Compare rates Energy Toolbase Geli Developer runs analysis for you **Custom Power Solar**

Cost Modeling Tools and Financial Modeling

Model financial returns over time

Property Assessed Clean Energy

• HERO

• Ygrene

• Renew Financial PACE funding –

• CleanFund

For Non-Profits – Collective Sun

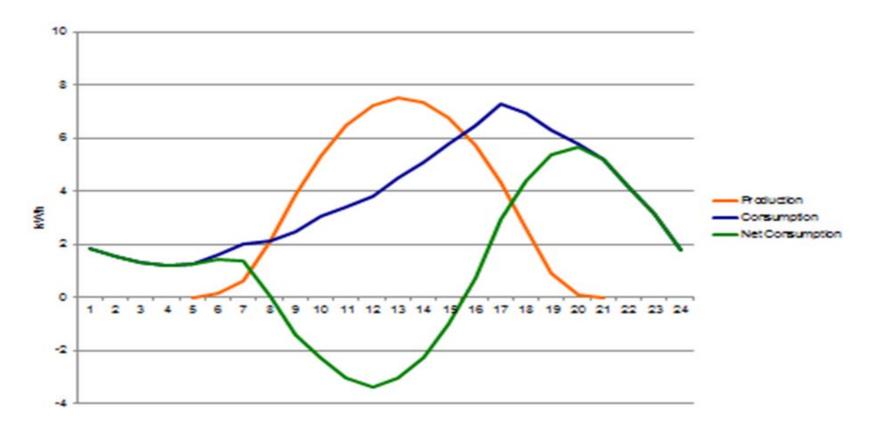
Cost Modeling Tool Tips

• Get the load profile

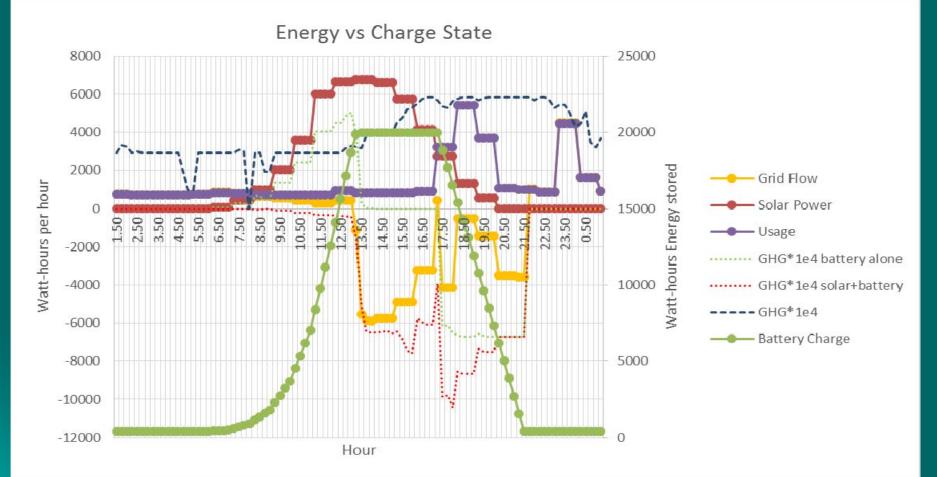
- UtilityAPI helps with format you need
- PG&E Green Button
- Calculate solar size
- Best size at least 100% of the annual energy usage in kwh of customer
- Quick estimate Annual Usage(kwh)/1500 = PV size in kw

Make sure size fits available space

- roof
- ground
- carport

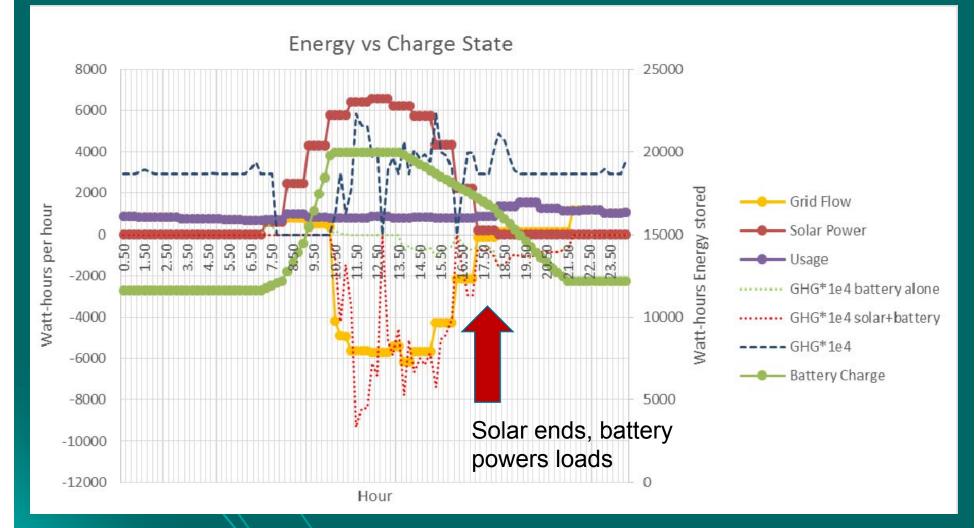

Cost Modeling Tool Tips Cont'd

- Storage size best SGIP rebate value
- = 2X the solar size
- Example:
 - 5kw solar needed,
 - 5*2=10kwh battery best value
- Best customer long term value
 - >2X, 4X the solar size
- 4X –cost savings double that of 2X battery size (4X savings).

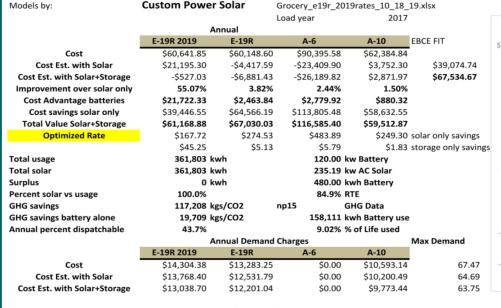


Typical Solar Production and Consumption

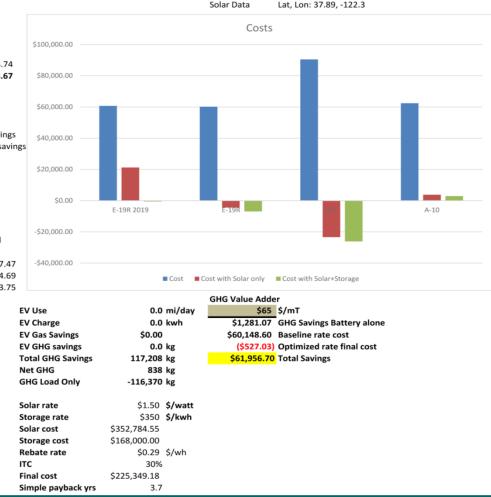
Net Load Profile



Residential Solar+Storage+EV – Arbitrage Daily Cycle

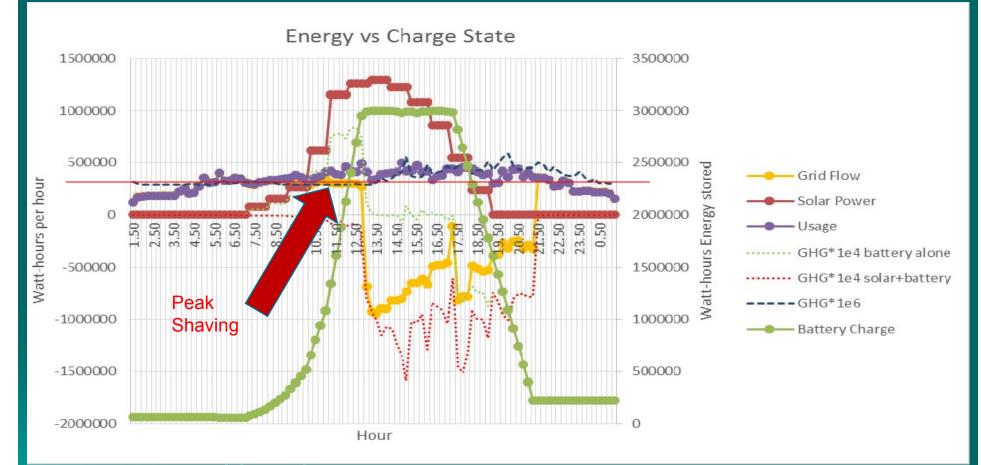

6/21 – cost savings through arbitrage – store solar power in am, discharge during peak

Resi Solar+Storage+EV Self Supply– Daily Cycle



2/4 – cost savings through self supply – store solar power in am, discharge during peak but only power loads

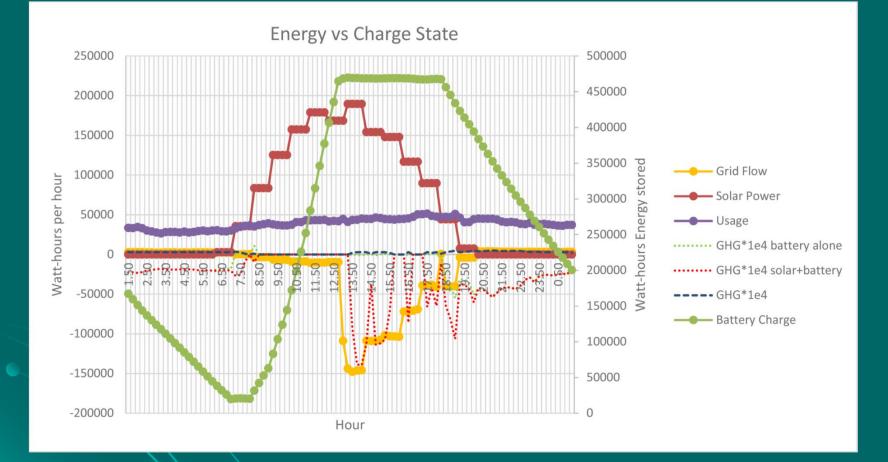
Commercial Rate Analysis


	Annual Energy Charges						
	E-19R 2019	E-19R	A-6	A-10			
Cost	\$46,337.47	\$46,865.35	\$90,395.58	\$51,791.70			
Cost Est. with Solar	\$7,426.90	-\$16,949.38	-\$23,409.90	-\$6,448.20			
Cost Est. with Solar+Storage	-\$13,565.73	-\$19,082.47	-\$26,189.82	-\$6,901.46			
Grid Charge	0 kwh						
Grid Charge	0 days						

All rates run with same conditions, optimized to first column rate

Commercial Solar+Storage – Arbitrage & Demand Reduction Daily Cycle

6/21 – cost savings through demand response – peak shaving (red line) and arbitrage – store solar power in am, discharge during peak



Best Rates for Solar+Storage Commercial

PG&E
A1STORE
B-19R
Option S if high demand charges
B-20R – very large systems over 1MW demand

Backup

Date: 4/30 Grid flow all negative – only exporting to grid. No export during power outage. Solar sized = 100% of load, 2X battery size

Conclusions

- Be conservative with storage cost savings projections – nothing worse than customers getting less than they planned on
- Design at least a 20% buffer in the size of the battery system
 - Improves lifetime
 - Reduces impact of day-to-day variations in use

Thank You!

Tom Rust Custom Power Solar, Inc 510-912-4662 trust@custompowersolar.com www.custompowersolar.com

SOLAR + ENERGY STORAGE

Lithium Iron Phosphate Batteries

- Lithium Iron Phosphate (LiFePo)
- 96-98% efficiency
- 3000-6000 cycle life
- High DOD (80%+)
- 3.2-3.6V/cell
- -20 to 60C operating temperature
- Much lighter weight than lead-acid

- Better fire resistance than Li-ion
- Tend to allow inverters to operate more efficiently
- Typically can last 10+ years
- Raw cost for cells now only \$110-130/kwh

LFP Safety

- Safest of all battery chemistries
- No Cobalt
- No Flourine in vented gas components if burns

Table 11 – Components measured in vented cell gas		
Gas		Measured %
Hydrogen	H ₂	50.73
Carbon Monoxide	СО	11.17
Carbon Dioxide	CO ₂	24.86
Methane	CH ₄	6.60
Ethylene	C_2H_4	3.06
Ethane	C_2H_6	1.19
Propene	C_3H_6	1.01
Propane	C_3H_8	0.40
-	C ₄ (Total)	0.88
-	C₅ (Total)	0.10
Total	-	100

CATL LFP 272Ah cell UL9540A test data from cell heated to destruction

Lead Acid Batteries

- 80-85% efficiency¹
- 1000-1500 cycle life at best
- Limited Depth of Discharge (DOD) for best lifetime
- Typical DOD only 50%
- Some require maintenance
- Lifetime is typically 6-7 years
- Heavy 4X as heavy as Lithium batteries
- Lead is a toxin
- Recycling an issue
 - ¹ One way efficiency

Lithium Ion Batteries

- Nickel Cobalt Manganese (NCM)
- Nickel Cobalt Aluminum (NCA)
- 96-98% efficiency
- 3000-5000 cycle life
- High DOD (80%+)
- 3.6-4.2V/cell
- 0-45C operating temperature
- Much lighter weight than lead-acid
- Typically can last 10+ years

Lithium Titanate Batteries

- Titanate (LTO)
- 96-98% efficiency
- 3000-30,000 cycle
 life
- High DOD (80%+)
- 2-2.6V/cell
- -30C to 45C operating temperature

- Lower energy density than other lithium
- Generally very high charge/discharge rate
- Higher cost but longer cycle life
- Typically can last 10+ years

Flow Batteries

- 80-85% efficiency
- 30,000+ cycle life
- Higher Capex
- Heavy
- Long cycles are typical

Storage System Components

 Batteries Cells in parallel • Cell groups in series Battery Management System (BMS) • Required for lithium batteries Maintains cells within 0.02V of each other Inverter Moves energy to/from battery Automatic Transfer Switch (option) Disconnects solar+storage system from grid Allows on grid or off-grid operation

Storage System Components, cont'd

Monitoring system - all system functions

 Voltages
 Temperatures
 Current flows

 Typically data stored in cloud and locally

Control –

Network interfaced system operations

• NGOM –

Separate Metering for monitoring solar vs battery
Not needed in residential systems

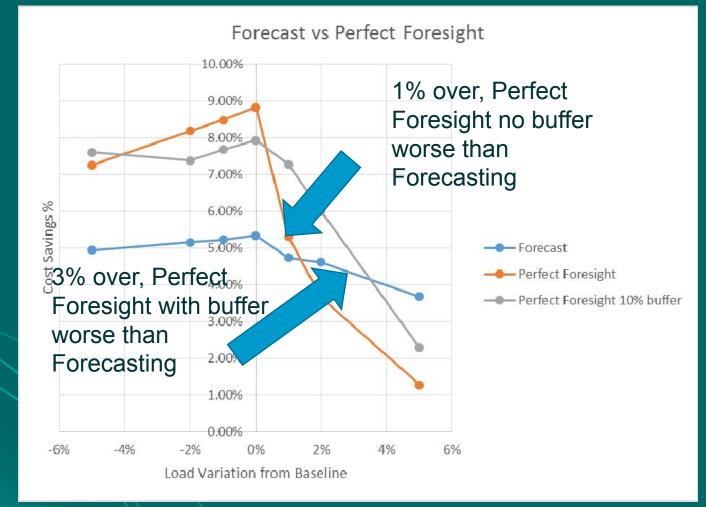
Examples - SGIP approved battery systems Energport BYD • LG SimpliPhi Tesla Contact your SGIP Program Administrator for specifics

Energport

Features:

- <u>Saves electricity cost</u> by reducing demand charges and shifting load to off-peak period
- System payback in less than 4 years
- Simple modular design, scalable for any size and use
- LFP Safest Lithium ion battery on the market
- Cloud-based optimization and reporting
- Small footprint
- Connects to existing circuits
- <u>Emergency backup</u> as bonus function
- \$0 down lease available
- Low APR financing available
- <u>California SGIP rebate</u> available
- 30% federal tax credit with Solar PV
- 15-year design life; 10-year warranty
- Fully installed for less than \$0.40/Wh
- CE, UL compliance

BYD Energy Storage System



240 Kwh in outdoor container Includes all operational and climate controls

How Realistic is Perfect Foresight in **Real World Storage Operations?** Many tools (Energy Toolbase, Geli) use a Perfect Foresight model to analyze load profiles+solar with given rate and determine "best case" cost savings -Not realistic in real life use More realistic – Forecasting – used by Custom Power Solar

Forecasting Sensitivity Analysis – Cost Savings

Conditions – C9 load (500kw demand peak), storage only 370kw,870kwh

Conclusions

- <u>Perfect Foresight</u> is extremely sensitive to real life load conditions – if load exceeds baseline – even slightly, savings are lost
 - 1% over load conditions eliminate all savings from Perfect Foresight vs Forecasting with no buffer
 - 1% over condition virtually certain in real life conditions
- Forecasting method likely produces more consistent, reliable cost savings than perfect foresight

