Community Microgrids

Solar Energy Battery Storage EVs with V2G

Custom Power Solar Inc

Community Microgrids

- Community scale power systems
- Battery storage with inverters provides power 24/7 all year round
- Solar power fills energy storage during mornings
- EVs charged during afternoon excess solar power
- EVs may provide additional energy storage during long cloudy low solar events
- Can import/export to outside grid

What is a Community Microgrid?

A **community microgrid** may allow PG&E to safely provide electricity using **generation** during an outage (by disconnecting from the main grid).

These microgrids would be designed to serve the portions of communities that include **community resources**, such as:

- Hospitals
- Police and fire stations
- Gas stations and markets

The community microgrid site selection process would likely consider **prior and expected future PSPS events**, along with other conditions that indicate an area is prone to outages.

Each community microgrid **would be unique and designed based on a number of different variables** that dictate the size of the microgrid, what community services are served and what elements are included in the design.

The diagram above represents an approximate layout of a community microgrid. $_{56}$ The layout and dimensions are approximate and for illustrative purposes only.

3

Energy storage would occupy all isolated sections of microgrid and provide the voltage and frequency support. Generation could be anywhere, though preferably in the isolated area or nearby. If an isolated area has no generation, then a daily provision for recharging is needed if more than one day of outage is anticipated.

Ultimate Goals

- Completely self-reliant no outside power needed
- Payback cost in 5-7 years once payback reached, maintenance cost very low (2%/yr)
 Solar lasts essentially forever
- Energy storage 20 year lifetime, recycled
- Carbon free zero carbon emissions
- Can disconnect from main grid during high fire threat events

Storage

- Primary storage 2 MWh 40' container energy storage with 1MW inverters (40'x8') Serves 200 residential customers (average) 10kwh day) • 40 commercial customers (average 50kwh/day) Secondary storage – residential storage (10-30kwh)
- EV storage typical 60kwh per EV

Residential Solar

- Standard roof installation and/or strapped ballasted roof mount on existing housing units. In the ballasted option, modules can be easily removed along with mounting hardware for replacement on new construction - Custom Power Solar unique solution
- Typical home 5-10kw

Commercial/Utility Scale Solar

- Roof, carport, or ground based mounting
- Average community needs 10kw PV per person, 30kwh of storage per person – includes both residential and commercial needs – this is 150% of annual load in generation
- Solar Area needed 500 sqft/person

System Financials

- Commercial PV –\$1.5/watt
- Residential PV \$2/watt
- Container 1 MW/2 MWh Storage \$150/kwh
- Residential storage \$200/kwh

Storage Modes

- Charge from outside grid
- Charge from solar
- Charge from EVs

Example – Fort Bragg

- Population 7359
- Northern California coastal city
- Peak Demand 17MW
- Solar 150% of load = 69MW peak
- Storage 3X = 208MWh
- Solar cost 50% mix resi/commercial = \$1.75/watt * 69MW = \$121M
- Storage cost 50% mix \$175/kwh * 208MWh
 = \$36.4M
- Does not include tax credits or rebates

Self Supply Mode

Solar power charges battery during morning hours Excess power exported to outside grid in afternoon Battery supplies loads all other times This example is max peak demand day

Self Supply Mode

GHG savings 24/7 with solar+storage – note GHG values negative (dashed red lines) 33,236 metric tons saved per year

System Analysis Rate & GHG Savings – 150% Solar

 Total \$27M annual energy savings based on NEM EV2, \$17M based on B19R behind the meter rates 108 Giga-wh generated annually 33,236 Tons of GHG savings per year • With 26% tax credit total cost = \$116M Simple payback based on 50% mix rates = 5.2 years

System Analysis & GHG Savings

Models by:	Custom Power	r Solar	Analysis			
			Load year	2018		
		Annual				
	EV2	B-19R			CCA	PG&E
Cost	\$18,974,989.75	\$14,386,620.29	\$0.00	\$0.00	\$18,974,989.75	\$18,974,989.
Cost Est. with Solar	-\$4,020,221.50	-\$87,772.85	\$0.00	\$0.00	-\$2,255,811.38	-\$1,098,107.
Cost Est. with Solar+Storage	-\$8,474,988.87	-\$2,594,846.10	\$0.00	\$0.00	-\$6,119,078.65	-\$1,071,526.
Improvement over solar only	19.37%	17.32%	0.00%	0.00%	18.20%	-0.13
Cost Advantage batteries	\$4,454,767.38	\$2,507,073.25	\$0.00	\$0.00	\$3,863,267.27	-\$26,580.
Solar only value	\$22,995,211.25	\$14,474,393.14	\$0.00	\$0.00	\$21,230,801.13	\$20,073,096.
Total Value Solar+Storage	\$27,449,978.62	\$16,981,466.39	\$0.00	\$0.00	\$25,094,068.40	\$20,046,516.
\$/kw solar+storage	\$395.30	\$244.55	\$0.00	\$0.00	\$361.38	\$288.
\$/kwh storage only	\$21.38	\$12.03	\$0.00	\$0.00	\$18.54	-\$0.
Total usage	73,207,145	kwh	69,440.02	kw Battery		
Total solar	109,810,717	kwh	69,440.02	kw AC Solar		
Surplus	36,603,572	kwh	208,330.00	kwh Battery		
Percent solar vs usage	150.0%		86.7%	RTE		
GHG savings	33,448,733	kgs/CO2	np15	GHG Data		
GHG savings battery alone	3,779,662	kgs/CO2	39,454,621	kwh Battery use		
GHG savings battery per kwh	18.1	kg/kwh	5.19%	% of Life used		
	Annual Demand		Charges		Max Demand	
	EV2	B-19R				
Cost	\$0.00	\$3,140,865.58	\$0.00	\$0.00	17035.53	
Cost Est. with Solar	\$0.00	\$3,034,851.05	\$0.00	\$0.00	15877.43	
Cost Est. with Solar+Storage	\$0.00	\$2,544,574.59	\$0.00	\$0.00	14465.91	

	Annual Energy Charges				
	EV2	B-19R			
Cost	\$18,974,989.75	\$11,245,754.71	\$0.00	\$0.00	
Cost Est. with Solar	-\$4,020,221.50	-\$3,122,623.91	\$0.00	\$0.00	
Cost Est. with Solar+Storage	-\$8,474,988.87	-\$5,139,420.69	\$0.00	\$0.00	
Grid Charge	1,203,912	kwh	1.64% of loa	d	
Grid charge days needed	17	days			
Battery Mode	Self-supply				
Max daily load	309,087	kwh	Average load	200,568 kw	
Max daily solar	506,869	kwh	Averga solar	300,851 kw	
Population	7,359		9.44 solar kw/person		
Vehicles per person	0.755		5,556 Vehicles		

Costs

\$25,000,000.00

EV Use	194,462 mi/day	\$65	\$/mT
EV Charge	48,615 kwh	\$245,678.00	GHG Savings Battery alone
EV Gas Savings	\$9,463,796.65	\$14,386,620.29	Baseline rate cost
EV GHG savings	21,056,948 kg	(\$8,474,988.87)	Optimized rate final cost
Total GHG Savings	54,505,680 kg	\$23,107,287.16	Total Savings
Net GHG savings	30,706,291 kg		
GHG Load Only	-23,799,389 kg		

28.3 bat kwh/person 35 Average miles/day

Rates based on behind the meter tariffs EV2 – best residential rate B19R – best commercial rate

How It Works

- Solar power generates energy stored in Lithium Iron Phosphate batteries during morning hours
- Energy storage reduces peak demand charges all year
- Energy storage offsets power from grid during peak rate periods & maximizes value
- Energy storage provides power in the event of grid failure, renewable by PV charging from the sun daily

Why 150% solar

Solar generation = 100% of load

Only 4 months solar>load

Solar generation = 150% of load

11 months solar>load

16

150% Solar

- Solar modules are inexpensive compared to battery storage
- 150% Solar allows storage to cover loads using storage all year with only 17 days needing external power sources

Worse Case Scenario
 Multiple Days Solar < Load
 Option 1 – Charge from grid – prefer during daylight hours, capture solar generated from other parts of grid. Charge difference of projected local solar vs projected load

- Mitigation reduce load during low solar multiple day events
- These only occur during winter months low fire threat periods as they are rainy months, so ok to charge from grid only 1.6% of total load needs to be drawn from grid with 150% solar 3x battery
 Option 2 Charge from EVs

Charge from EV Vehicle to Grid (V2G) 755 vehicles per 1000 persons in California If all vehicles were fully electric, 5556 BEVs in Fort Bragg * average 60kwh = 333 MWh of energy storage Even current 5% adoption of BEVs = 17MWh of currently existing energy storage Does not include trucks, bus and other large scale EVs V2G for homes provides up to 6 days of backup power (10kwh average home use) 19

Charge from EV Vehicle to Home (V2H) Solutions now – Custom Power Solar & Outback Power inverters – V2H using 12V aux power – works on ANY EV or Plugin EV must remain powered on Main traction battery provides power to 12V system. 12V system provides power through 2kw inverter back to Outback Power generator input.

 Part of a complete solar+battery storage solution including EV charging

80% Solar

- 80% Solar allows storage to cover loads using storage all year with 67 days needing external power sources
- Lower up front cost than 150% solar
- Some grid charge events needed during summer months – fire season – not good

Example – Fort Bragg

- Solar 80% of load = 37MW peak
- Storage 6X = 222MWh
- Solar cost 50% mix resi/commercial = \$1.75/watt * 69MW = \$65M
- Storage cost 50% mix \$175/kwh * 222MWh
 = \$39M
- Does not include tax credits or rebates

System Analysis Rate & GHG Savings – 80% Solar

 Total \$17M annual energy savings based on NEM EV2, \$10M based on B19R behind the meter rates 58 Giga-wh generated annually 19,162 Tons of GHG savings per year With 26% tax credit total cost = \$77M Simple payback based on 50% mix rates = 5.7 years

System Analysis & GHG Savings

Models by:	Custom Power	r Solar	Analysis				
			Load year	2018			
		Annual					\$2
	EV2	B-19R			CCA	PG&E	
Cost	\$18,974,989.75	\$14,386,620.29	\$0.00	\$0.00	\$18,974,989.75	\$18,974,989.75	21
Cost Est. with Solar	\$6,710,877.09	\$6,622,658.92	\$0.00	\$0.00	\$5,329,386.00	\$7,385,726.17	\$1
Cost Est. with Solar+Storage	\$2,334,992.20	\$4,399,731.30	\$0.00	\$0.00	\$1,551,146.81	\$3,034,736.82	
Improvement over solar only	35.68%	28.63%	0.00%	0.00%	27.69%	37.54%	\$1
Cost Advantage batteries	\$4,375,884.89	\$2,222,927.63	\$0.00	\$0.00	\$3,778,239.19	\$4,350,989.35	
Solar only value	\$12,264,112.67	\$7,763,961.37	\$0.00	\$0.00	\$13,645,603.75	\$11,589,263.58	\$1
Total Value Solar+Storage	\$16,639,997.55	\$9,986,888.99	\$0.00	\$0.00	\$17,423,842.94	\$15,940,252.93	
\$/kw solar+storage	\$449.31	\$269.66	\$0.00	\$0.00	\$470.47	\$430.41	\$1
\$/kwh storage only	\$19.69	\$10.00	\$0.00	\$0.00	\$17.00	\$19.58	4
Total usage	73,207,145	kwh	37,034.68	kw Battery			7
Total solar	58,565,716	kwh	37,034.68	kw AC Solar			ŝ
Surplus	-14,641,429	kwh	222,210.00	kwh Battery			
Percent solar vs usage	80.0%		86.7%	RTE			Ş
GHG savings	19,162,340	kgs/CO2	np15	GHG Data			
GHG savings battery alone	3,338,836	kgs/CO2	37,975,778	kwh Battery use			\$
GHG savings battery per kwh	15.0	kg/kwh	4.68%	% of Life used			
Annual Demand Charges Max Demand							
	EV2	B-19R					
Cost	\$0.00	\$3,140,865.58	\$0.00	\$0.00	17035.53		
Cost Est. with Solar	\$0.00	\$3,040,039.47	\$0.00	\$0.00	16001.15		
Cost Est. with Solar+Storage	\$0.00	\$2,882,382.78	\$0.00	\$0.00	16185.24		

	Annual Energy Charges					
	EV2	B-19R				
Cost	\$18,974,989.75	\$11,245,754.71	\$0.00	\$0.00		
Cost Est. with Solar	\$6,710,877.09	\$3,582,619.45	\$0.00	\$0.00		
Cost Est. with Solar+Storage	\$2,334,992.20	\$1,517,348.52	\$0.00	\$0.00		
Grid Charge	5,934,413	kwh	8.11% of lo	ad		
Grid charge days needed	67	days				
Battery Mode	Self-supply					
Max daily load	309,087	kwh	Average load	200,568 kw		
Max daily solar	270,330	kwh	Averga solar	160,454 kw		
Population	7,359	7,359		5.03 solar kw/person		
Vehicles per person	0.755 5.556 Vehicles			cles		

194,462 mi/day 48,615 kwh \$9,463,796.65 21,056,948 kg 40,219,288 kg 16,419,899 kg -23,799,389 kg

EV Use

EV Charge

EV Gas Savings

EV GHG savings

GHG Load Only

30.2 bat kwh/person 35 Average miles/day

Total GHG Savings Net GHG savings

GHG Value Adder

\$65 \$/mT \$217,024.33 GHG Savings Battery alone \$14,386,620.29 Baseline rate cost \$2,334,992.20 Optimized rate final cost \$12,268,652.42 Total Savings

Rates based on behind the meter tariffs

EV2 – best residential rate

B19R – best commercial rate

24

Benefits Reduced energy costs Reliable Power – grid fails, storage power can operate island from one day to the next, provided solar power refills the battery Consider add chargers for electric vehicles for additional value Energy Security

Benefits to California

 Transmission lines can be disconnected for high fire threat events

 Vastly reduce green house gas emissions

 Big step forward to cleaner California with less global warming
 Reduce demand on grid loads

Custom Power Solar Developer

- Specialists in Solar Power with Advanced **Energy Storage**
- Since 2012 solar-plus-storage solutions
- Solar power pioneers since 2004 developers of thin silicon solar technology at Photon Energy Systems / Calisolar in Sunnyvale
- Solar Power Plants Installation, Operation, and Maintenance 27

Calwave Technologies, Inc EPC

Calwave Background

CSLB C-10 Lic#1028005 ²⁸

Calwave Installations

Solar Carport

Battery Storage

Solar Suspension Racking

Solar Rooftop

Solar Floating Panels

Equipment

- 375-400 watt Modules with embedded micro-inverters or equivalent
- LFP Battery Storage systems with integrated inverters
- CEC and Code Compliant

Warranties

- Energport storage system comes with a 10-year warranty - can be extended to 20 years
- PV system manufacturer's 25-year performance warranty - > 80% power level, typically greater than 90% at 25 years
- PV inverters 10-year warranty, may be able to increase to 20-year warranty

Energport Energy Storage System

Three - 2MW 2MWH 40x8x9.5ft containers Total 6MW with 6MWH storage Includes all operational and climate controls System will Include automatic transfer switch Automatic Transfer Switch (ATS) automatically Switches to battery power in the event of grid failure

Energport Energy Storage System

Resiliency. The system provides backup power during grid outages and prevents losses.
Solar Integration. The system stores excess solar energy produced during the day for use at another time.
Frequency Regulation. The system can provide frequency regulation in wholesale markets.
Demand Charge Management The system will intelligently charge and discharge to reduce peak loads.

SYSTEM DATA	L120240	L5001000	L20002000
Nominal AC Voltage – 3 Phase*	480V/60Hz	480V/60Hz	480V/60Hz
Nominal Continuous Power Rating (kW AC)*	120	500	2,000
Nominal Battery Capacity (kWh DC)	258	1,144	1,980
Duration of Discharge (Hours)*	2	2	1
Nominal Battery Voltage (Vdc)	358	666	768
DC Amp-hours (Ah)	720	1,728	3,456
System Round-Trip Efficiency (RTE%)	89%	89%	89%
Dimension (D x W x H, In.)	10' x 8' x 8.5'	20' x 8' x 8.5'	40' x 8' x 9.5'
Weight (tons)	5.5	15.7	42
Operating Temperature		32 °F - 131 °F	
Standard Warranty Length	10 ye	ears; designated for daily cy	veling
Certification	UN38.3, UI	L 1973, UL 1741-SA, UL 1973	& UL 9540
Enclosure Rating		IP54/NEMA 3R	
HVAC		Included	
Isolation Transformer	No	Yes	Yes
Fire Suppression	No	Yes	Yes
Operation Mode		On/Off Grid	
EMS Software & Control	Inclu	ded; cloud-based web inte	rface

Three – L20002000 Total 6MW with 6MWH storage

Energport Energy Storage System

Example access panel Includes all operational and climate controls

Advantages of Storage

- Utility peak periods have shifted to evening hours in 2019
- Energy Security power during grid outage
- Buffers fluctuations clouds, rainy days
- Save solar power in battery energy storage in the morning
- Provide power in the afternoon and during evening peak rate periods
- Adds value by offsetting power use at peak rate periods
- Potential to sell power at peak periods

Operations & Maintenance

- Custom Power Solar & Calwave Technologies provide operations, maintenance, and monitoring
 - Inverters may need replacement in 10-15 years
 - Batteries will probably need replacement in 10-15 years.
 - Batteries likely to be less than \$100/kwh in 10-15 years
 - Solar PV panels typically warrantied for 25 years

Custom Power Solar, Inc Calwave Technologies, Inc

www.custompowersolar.com www.calwavetech.com

Tom Rust trust@CustomPowerSolar.com Custom Power Solar, Inc 510-912-4662

Thank you!